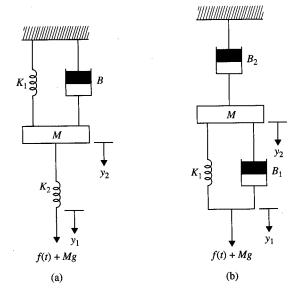
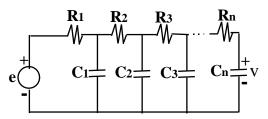
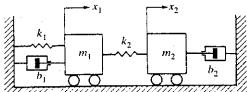
OKLAHOMA STATE UNIVERSITY

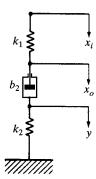
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

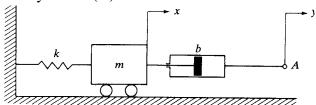

ECEN 3723 Systems Dynamics Fall 2012 Midterm Exam #2 November 8, 2012


Choos <i>Please specif</i>	•	ır out of f four listed	-		d:
	• •	; 3)		•	
Name : _					

E-Mail Address:


Problem 1: Derive the equations of motion for both mechanical systems (a) and (b) shown below.


Problem 2: Derive the transfer function V(s)/E(s) for the given RC ladder circuit given below where e(t) is the input source and v(t) is the output response (note $R_1 \neq R_2 \neq \cdots \neq R_n$ and $C_1 \neq C_2 \neq \cdots \neq C_n$).


<u>Problem 3</u>: Obtain an *analogous* electrical circuits (using force-current analogy) for the mechanical system shown below.

Problem 4: Derive the transfer function $\frac{X_o(s)}{X_i(s)}$ of the mechanical system shown below. Assume that $x_o(0-)=0$ and y(0-)=0.

Problem 5: The mechanical system shown below is at rest initially. At t = 0, a unit-step displacement input is applied to point A (i.e., y(t) = u(t)). Assuming that the system remains linear throughout the response period and is *overdamped*, determine the response x(t) as well as the values of x(0+) and steady state $x(\infty)$.

